Due to a highway accident, 150 L of concentrated hydrochloric acid (12.0 M) is released into a lake containing 5.0 ´ 105 m3 of water. If the pH of this lake was 7.0 prior to the accident, what is the pH of the lake following the accident?

Respuesta :

Answer: The pH of the lake after accident is 5.44

Explanation:

To calculate the molarity of lake, we use the equation:

[tex]M_1V_1=M_2V_2[/tex]

where,

[tex]M_1\text{ and }V_1[/tex] are the molarity and volume of the water

[tex]M_2\text{ and }V_2[/tex] are the molarity and volume of hydrochloric acid

We are given:

Conversion factor used:  [tex]1m^3=1000L[/tex]

[tex]M_1=?M\\V_1=(5\times 10^5m^3+150L)=[(5\times 10^8)+(150)]L\\M_2=12.0M\\V_2=150L[/tex]

Putting values in above equation, we get:

[tex]M_1\times(5\times 10^8+150)=12.0\times 150\\\\M_1=\frac{12.0\times 150}{(5\times 10^8+150)}=3.59\times 10^{-6}[/tex]

To calculate the pH of the solution, we use the equation:

[tex]pH=-\log[H^+][/tex]

We are given:

[tex][H^+]=3.59\times 10^{-6}[/tex]

Putting values in above equation, we get:

[tex]pH=-\log(3.59\times 10^{-6})\\\\pH=5.44[/tex]

Hence, the pH of the lake after accident is 5.44

Answer:

The pH of the lake following the accident is 5.43.

Explanation:

[tex]Molarity=\frac{Moles}{Voluem(L)}[/tex]

Concentration of HCL =12.0 M

Volume of HCL = 150 L

Moles of hydrogen ions= n

[tex]n=12 M\times 150 L=1800 mol[/tex]

The pH of the lake = 7

[tex]pH=-\log[H^][/tex]

[tex]7=-\log[H^+][/tex]

[tex][H^+]=10^{-7} M[/tex]

Concentration of hydrogen ions in lake = [tex]10^{-7} M[/tex]

Volume of water in lake  = [tex]V_2=5\times 10^5 m^3 = 5\times 10^8 L[/tex]

Moles of hydrogen ions in lake = n'

[tex]n'=10^{-7} M\times 5\times 10^8 L=50 mol[/tex]

Concentration of hydrogen ions after release of HCL in lake: C

Total moles of HCl = n + n' = 1800 mol + 50 mol = 1850 mol

Volume of the lake = [tex]150 L + 5\times 10^8 L[/tex]

[tex]C=\frac{1850 mol}{150 L + 5\times 10^8 L}=3.6999\times 10^{-6} M[/tex]

The final pH of the lake:

[tex]pH=-\log[C][/tex]

=[tex]-\log[3.6999\times 10^{-6} M]=5.43[/tex]

The pH of the lake following the accident is 5.43.