What value of k makes the statement true? x ^ k * y ^ 4 * (2x ^ 3 + 7x ^ 2 * y ^ 4) = 2x ^ 4 * y ^ 4 + 7x ^ 3 * y ^ 8

Respuesta :

Answer:

k=1

Step-by-step explanation:

Let us simplify the left hand side of the given expression .

[tex]x^k \times y^4 (2x^3+7x^2\times y^4)=2x^k^+^3 \times y^4 +7x^k^+^2 \times y^8[/tex]

The exponent of the like terms gets added on multiplication like

[tex]a^m \times a^n = a^m^+^n[/tex]

Now we compare the left hand side expression with the right hand side.

Since they should be equal to each other , so comparing their exponents and equating them.

Exponents of [tex]x[/tex] should be same on either side.

Therefore,  [tex]k+3 = 4\\gives\\k=1[/tex]

Similarly on comparing the other 'x' exponent

[tex]k+2 = 3\\gives\\k=1[/tex]

Thus [tex]k=1[/tex] is the required answer.