The expression for finding the width of given box is:
[tex]Width=\frac{(2p^2+15p+28)}{(p+4)}[/tex]
Step-by-step explanation:
Given
[tex]Volume\ of\ box = V = 2p^3+15p^2+28p[/tex]
[tex]Height=p\\length=p+4[/tex]
The formula for volume of box is:
[tex]V=Length*width*height\\Putting\ the\ values\\2p^3+15p^2+28p = (p+4)*width*p\\p(2p^2+15p+28) = p(p+4)*width\\\frac{p(2p^2+15p+28)}{p(p+4)}=Width\\So,\\Width=\frac{(2p^2+15p+28)}{(p+4)}[/tex]
Hence,
The expression for finding the width of given box is:
[tex]Width=\frac{(2p^2+15p+28)}{(p+4)}[/tex]
Keywords: Polynomials, Volume
Learn more about polynomials at:
#LearnwithBrainly