Suppose that the volume of a box is (2p3 + 15p2 + 28p) cubic feet. The height is p feet and the length is (p + 4) feet. Explain the process to find an expression that represents the width.

Respuesta :

The expression for finding the width of given box is:

[tex]Width=\frac{(2p^2+15p+28)}{(p+4)}[/tex]

Step-by-step explanation:

Given

[tex]Volume\ of\ box = V = 2p^3+15p^2+28p[/tex]

[tex]Height=p\\length=p+4[/tex]

The formula for volume of box is:

[tex]V=Length*width*height\\Putting\ the\ values\\2p^3+15p^2+28p = (p+4)*width*p\\p(2p^2+15p+28) = p(p+4)*width\\\frac{p(2p^2+15p+28)}{p(p+4)}=Width\\So,\\Width=\frac{(2p^2+15p+28)}{(p+4)}[/tex]

Hence,

The expression for finding the width of given box is:

[tex]Width=\frac{(2p^2+15p+28)}{(p+4)}[/tex]

Keywords: Polynomials, Volume

Learn more about polynomials at:

  • brainly.com/question/9533500
  • brainly.com/question/9527632

#LearnwithBrainly