Answer:
[tex]\left[\begin{array}{ccc}5&4\\3&6\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right]=\left[\begin{array}{ccc}-14\\6\end{array}\right][/tex] is the required matrix form.
Step-by-step explanation:
Here, the given system of equation is:
5 x + 4 y = -14,
3 x + 6 y = 6
In a system of equation, the matrix for is given as
AX = b
Here, A = Co-efficient Matrix, X = Variable Matrix and B = Constant Matrix
Considering the given system:
Co-efficient Matrix(A) = [tex]\left[\begin{array}{ccc}5&4\\3&6\end{array}\right][/tex]
Variable Matrix(X) = [tex]\left[\begin{array}{ccc}x\\y\end{array}\right][/tex]
Constant Matrix(b) =[tex]\left[\begin{array}{ccc}-14\\6\end{array}\right][/tex]
Hence, the combined matrix form of AX = b is
[tex]\left[\begin{array}{ccc}5&4\\3&6\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right]=\left[\begin{array}{ccc}-14\\6\end{array}\right][/tex]