Respuesta :

Answer:

[tex]\left[\begin{array}{ccc}5&4\\3&6\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right]=\left[\begin{array}{ccc}-14\\6\end{array}\right][/tex] is the required matrix form.

Step-by-step explanation:

Here, the given system of equation is:

5 x + 4 y = -14,

3 x + 6 y = 6

In a system of equation, the matrix for is given as

AX = b

Here, A  = Co-efficient Matrix, X =  Variable Matrix and B = Constant Matrix

Considering the given system:

Co-efficient Matrix(A)  = [tex]\left[\begin{array}{ccc}5&4\\3&6\end{array}\right][/tex]

Variable Matrix(X) = [tex]\left[\begin{array}{ccc}x\\y\end{array}\right][/tex]

Constant Matrix(b)   =[tex]\left[\begin{array}{ccc}-14\\6\end{array}\right][/tex]

Hence, the combined matrix form  of AX = b is

[tex]\left[\begin{array}{ccc}5&4\\3&6\end{array}\right]\left[\begin{array}{ccc}x\\y\end{array}\right]=\left[\begin{array}{ccc}-14\\6\end{array}\right][/tex]