Answer:
[tex]w=3rev/s[/tex]
Explanation:
The motion has two steps so is going to be before and after analysis
Before:
[tex]L=I*w[/tex]
[tex]L=\frac{1}{2}*m*R^2*w[/tex]
[tex]L=\frac{1}{2}*m*R^2*\pi *f[/tex]
After:
[tex]L'=\frac{1}{2}*m*R^2*w+\frac{1}{12}*m*R^2*w[/tex]
[tex]m*R^2w'*(\frac{1}{2}+\frac{1}{3})[/tex]
[tex]\frac{5}{6}*m*R^2*\pi*f'[/tex]
Angular momentum is conserved
[tex]L=L'[/tex]
[tex]L=\frac{1}{2}*m*R^2*\pi *f=\frac{5}{6}*m*R^2*2*\pi *f'[/tex]
[tex]f'=\frac{6}{10}*5rev/s[/tex]
[tex]w=3rev/s[/tex]