Answer:
The Solution is (3, 9)
Step-by-step explanation:
Given
[tex]4x-2y=-6[/tex]
[tex]3x+y=18[/tex]
Now by Using Cramer's Rule
Solving for x:
[tex]x= \frac{Dx}{D} =\frac{\begin{vmatrix}-6 & -2 &\\18 &1 &\end{vmatrix}}{\begin{vmatrix}4 & -2 &\\3 &1 &\end{vmatrix}} = \frac{-6+36}{4+6}=\frac{30}{10}=3[/tex]
Solving for y:
[tex]y= \frac{Dx}{D} =\frac{\begin{vmatrix}4 & -6 &\\3 &18 & \end{vmatrix}}{\begin{vmatrix}4 & -2 &\\3 &1 & \end{vmatrix}} = \frac{72+18}{4+6}=\frac{90}{10}=9[/tex]
The Solution is (3, 9)