Respuesta :
Answer:
(a) the velocity of the plank relative to the frozen pond is 0.825 m/s
(b) the velocity of the plank relative to the frozen pond is 0.275 m/s
Explanation:
Given information:
student's mass, [tex]m_{s}[/tex] = 50kg
wooden plank's mass, [tex]m_{p}[/tex] = 150 kg
Note : all the velocity is in vector
student's velocity relative to the plank,[tex]v_{sp}[/tex] = 1.10i m/s
student's velocity relative to frozen pond, [tex]v_{sf}[/tex]
[tex]v_{sf}[/tex] = [tex]v_{sp}[/tex] + [tex]v_{p}[/tex]
(a) the velocity of the plank relative to the frozen pond, [tex]v_{pf}[/tex]
to calculate the velocity of the plank relative to the frozen pond, we can start from the momentum, p.
The total momentum is
p = [tex]m_{s}[/tex] [tex]v_{s}[/tex] + [tex]m_{p}[/tex] [tex]v_{p}[/tex]
[tex]v_{s}[/tex] is the velocity of student relative to the frozen pond
[tex]v_{p}[/tex] is the velocity of the plank relative to the frozen pond
at rest on a frozen pond, the momentum is 0. so,
p = 0
[tex]m_{s}[/tex] [tex]v_{s}[/tex] + [tex]m_{p}[/tex] [tex]v_{p}[/tex] = 0
[tex]m_{s}[/tex] [tex]v_{s}[/tex] = - [tex]m_{p}[/tex] [tex]v_{p}[/tex]
*the negative indicates that the student and the plank are moving in opposite direction
now subtitute student's velocity relative to frozen pond, [tex]v_{sf}[/tex] to the equation.
[tex]m_{s} ({v_{sp} + v_{p} )[/tex] = - [tex]m_{p} v_{p}[/tex]
[tex]m_{s}v_{sp} + m_{s} v_{p}[/tex] = - [tex]m_{p} v_{p}[/tex]
- [tex](m_{s} v_{p} + m_{p} v_{p3}[/tex]) = - [tex]m_{s} v_{p}[/tex]
-[tex](m_{s} + m_{p} )v_{p}[/tex] = - [tex]m_{s} v_{p}[/tex]
[tex]v_{p}[/tex] = -[tex](\frac{m_{s} }{m_{s} +m_{p} })[/tex]
[tex]v_{p}[/tex] = - [tex](\frac{50}{150+50} )(1.10i)[/tex]
[tex]v_{p}[/tex] = -0.825 i m/s
the velocity of the plank relative to the frozen pond is 0.825 m/s in the opposite direction
(b) the velocity of the student relative to the frozen pond
[tex]v_{sf}[/tex] = [tex]v_{sp}[/tex] + [tex]v_{p}[/tex]
[tex]v_{sf}[/tex] = (1.10i m/s) + (- 0.825i m/s)
[tex]v_{sf}[/tex] = (1.10i m/s - 0.825i m/s)
[tex]v_{sf}[/tex] = 0.275i m/s
the velocity of the plank relative to the frozen pond is 0.275 m/s.