The rectangle shown has a perimeter of 50 cm and the given area. Its length is 4 more than twice its width. Write and solve a system of equations to find the dimensions of the rectangle

Respuesta :

Answer:

2 (  k + ( 2k +4))  = 50 cm  is the required  equation.

Width  of rectangle = 7 cm,  Length of  rectangle =  18 cm

Step-by-step explanation:

The perimeter of the rectangle  =  50 cm

Le the width of the rectangle  =  k cm

⇒The length of the rectangle  = (2k + 4) cm

Now, PERIMETER OF THE RECTANGLE = 2( LENGTH  WIDTH)

⇒   2 (  k + ( 2k +4))  = 50 cm

or, 2( 3k+ 4)  = 50

⇒   6k + 8  =  50

or, 6k   = 50 - 8 =   42

or, k  = 42/6 = 7

⇒   k =  7 cm

Hence, the width of the rectangle  = k =  7 cm

and the length of the rectangle =  (2k +4)  =  2(7) + 4 = 18 cm