Respuesta :
Answer:
[tex]4.5\times 10^{-5} T[/tex]
Explanation:
We are given that
Current in wire=40 A
Magnetic field=[tex]B_1=3.5\times 10^{-5}[/tex] T( vertically downward)
We have to find the resultant magnitude of the magnetic field 29 cm above the wire and 29 cm below the wire.
According to Bio-Savart law, the magnetic field exerted by the wire at distance R is given by
[tex]B_{wire}=B_2=\frac{\mu_0I}{2\pi R}[/tex]
We have R=29 cm=[tex]\frac{29}{100}=0.29 m[/tex]
1 m=100 cm
Substitute the values in the given formula
[tex]B_2=\frac{4\pi\times 10^{-7}\times 40}{2\times \pi\times 0.29}=\frac{2\times 40\times 10^{-7}}{0.29}=2.76\times 10^{-5} T[/tex]
The resultant magnetic field is given by
[tex]B=\sqrt{B^2_1+B^2_2}[/tex]
Substitute the values then we get
[tex]B=\sqrt{(3.5\times 10^{-5})^2+(2.76\times 10^{-5})^2}[/tex]
[tex]B=4.5\times 10^{-5} T[/tex]
The resultant magnitude of magnetic field is same above and below the wire as it is at same distance.
The resultant magnitude of the magnetic field 29 cm below the wire=[tex]4.5\times 10^{-5} T[/tex]
Hence, the resultant magnitude of the magnetic field 29 cm above the wire=[tex]4.5\times 10^{-5} T[/tex]