Respuesta :

Answer:

Option c)

10π ft^2/ft  

Explanation:

Area of the circular puddle = A

                                         =[tex]\pi r^2[/tex]

Where r is the radius of the circular puddle

Since the area of the circular puddle is constantly changing with respect to radius

Therefore, the differential equation hence formed will be

= [tex]\frac{d(A)}{dr}[/tex]

On putting the value of A

= [tex]\frac{d(\pi r2)}{dr}[/tex]

On differentiating

= 2πr

Hence , Area= A= 2πr

Putting the value of r = 5ft  

Area = [tex]2\times 5\pi ft[/tex]

       = [tex]10\pi ft^2/ft[/tex]