Answer:
[tex]V=2.0757\times 10^{-4} \times 1000 = 0.20757 \,liter[/tex]
Explanation:
Given that:
quantity of heat to be removed, [tex]Q= 47.4\,BTU[/tex]
we know,
[tex]1\,BTU= 1055.06\,J[/tex]
density of freon, [tex]\rho=1490\,kg.m^{-3}[/tex]
latent heat of vaporization of freon, [tex]L=161.7\times 10^3 J.kg^{-1}[/tex]
So,
heat to be removed in joules,
[tex]Q=47.4\times 1055.06[/tex]
[tex]Q=50009.844\,J[/tex]
Now, the quantity of freon required to remove the above mentioned heat:
[tex]m=\frac{Q}{L}[/tex]
[tex]m=\frac{50009.844}{161.7\times 10^3}[/tex]
[tex]m=0.3093\,kg[/tex]
Now, volume
[tex]V=\frac{m}{\rho}[/tex]
[tex]V=\frac{0.3093}{1490}[/tex]
[tex]V=2.0757\times 10^{-4}m^3[/tex]
[tex]V=2.0757\times 10^{-4} \times 1000[/tex]
[tex]V = 0.20757 \,liter[/tex]