contestada

A heat recovery system​ (HRS) is used to conserve heat from the surroundings and supply it to the Mars Rover. The HRS fluid loops use Freon as the working fluid. The instrumentation must be kept as a temperature greater than negative 67−67 degrees Fahrenheit​ [°F] to avoid damage. The temperature in the area of Mars where the rover is exploring is 189189 kelvins​ [K]. If the system must remove 47.447.4 British Thermal Units​ [BTU] of​ energy, what volume of Freon is needed in units of liters​ [L]?

Respuesta :

Answer:

[tex]V=2.0757\times 10^{-4} \times 1000 = 0.20757 \,liter[/tex]

Explanation:

Given that:

quantity of heat to be removed, [tex]Q= 47.4\,BTU[/tex]

we know,

[tex]1\,BTU= 1055.06\,J[/tex]

density of freon, [tex]\rho=1490\,kg.m^{-3}[/tex]

latent heat of vaporization of freon, [tex]L=161.7\times 10^3 J.kg^{-1}[/tex]

So,

heat to be removed in joules,

[tex]Q=47.4\times 1055.06[/tex]

[tex]Q=50009.844\,J[/tex]

Now, the quantity of freon required to remove the above mentioned heat:

[tex]m=\frac{Q}{L}[/tex]

[tex]m=\frac{50009.844}{161.7\times 10^3}[/tex]

[tex]m=0.3093\,kg[/tex]

Now, volume

[tex]V=\frac{m}{\rho}[/tex]

[tex]V=\frac{0.3093}{1490}[/tex]

[tex]V=2.0757\times 10^{-4}m^3[/tex]

[tex]V=2.0757\times 10^{-4} \times 1000[/tex]

[tex]V = 0.20757 \,liter[/tex]