Respuesta :
Answer:
The Sum of the Expression [tex](4x^3-3x+2x^3)+(2-2x^2+6x)[/tex] is [tex](6x^3+2x^2+5x)[/tex]
Explanation:
Given :
[tex](4x^3-3x+2x^3)+(2x-2x^2+6x)[/tex]
Now we will use the BODMAS method Which has a rule to use it and this rule states that if any equation has bracket, off, Divide ,Multiply , addition and subtraction signs then we will solve first Bracket then Off then Division then Multiplication then Addition and at last subtraction.
So,
Sum=[tex](4x^3-3x+2x^3)+(2x-2x^2+6x)[/tex]
Sum=[tex](6x^3-3x)+(-2x^2+8x)[/tex]
Sum=[tex](6x^3-3x-2x^2+8x)[/tex]
Sum=[tex](6x^3-2x^2+5x)[/tex]
Hence the Sum of the above Expression is [tex](6x^3-2x^2+5x)[/tex]