Four traveling waves are described by the following equations, where all quantities are measured in SI units and y represents the displacement. I: y = 0.12 cos(3x - 21t) II: y = 0.15 sin(6x + 42t) III: y = 0.13 cos(6x + 21t) IV: y = -0.27 sin(3x - 42t) Which of these waves have the same period?

Respuesta :

Answer:

[tex]T_1=T_3=\dfrac{2\pi}{21}[/tex]

[tex]T_2=T_4=\dfrac{2\pi}{42}[/tex]

Explanation:

Wave 1, [tex]y_1=0.12\ cos(3x-21t)[/tex]

Wave 2, [tex]y_2=0.15\ sin(6x+42t)[/tex]

Wave 3, [tex]y_3=0.13\ cos(6x+21t)[/tex]

Wave 4, [tex]y_4=-0.27\ sin(3x-42t)[/tex]

The general equation of travelling wave is given by :

[tex]y=A\ cos(kx\pm \omega t)[/tex]

The value of [tex]\omega[/tex] will remain the same if we take phase difference into account.

For first wave,

[tex]\omega_1=21[/tex]

[tex]\dfrac{2\pi }{T_1}=21[/tex]

[tex]T_1=\dfrac{2\pi}{21}[/tex]

For second wave,

[tex]\omega_2=42[/tex]

[tex]\dfrac{2\pi }{T_2}=42[/tex]

[tex]T_2=\dfrac{2\pi}{42}[/tex]

For the third wave,

[tex]\omega_3=21[/tex]

[tex]\dfrac{2\pi }{T_3}=21[/tex]

[tex]T_3=\dfrac{2\pi}{21}[/tex]

For the fourth wave,

[tex]\omega_4=42[/tex]

[tex]\dfrac{2\pi }{T_4}=42[/tex]

[tex]T_4=\dfrac{2\pi}{42}[/tex]

It is clear from above calculations that waves 1 and 3 have same time period. Also, wave 2 and 4 have same time period. Hence, this is the required solution.