Answer:
Part a)
[tex]K = 3.7 \times 10^{-16} J[/tex]
Part b)
[tex]E = 8.4 \times 10^4 N/C[/tex]
Part c)
[tex]a = 1.48 \times 10^{16} m/s^2[/tex]
Part d)
[tex]t = 1.93 \times 10^{-9} s[/tex]
Explanation:
Part a)
kinetic energy of the electrons is given as
[tex]K = \frac{1}{2}mv^2[/tex]
[tex]K = \frac{1}{2}(9.11 \times 10^{-31})(0.095\times 3\times 10^8)^2[/tex]
so we will have
[tex]K = 3.7 \times 10^{-16} J[/tex]
Part b)
As we know that this kinetic energy is due to the electric field
so we will have
[tex]QE.d = K[/tex]
[tex](1.6 \times 10^{-19})E(2.75 \times 10^{-2}) = 3.7 \times 10^{-16}[/tex]
[tex]E = 8.4 \times 10^4 N/C[/tex]
Part c)
Acceleration of the electron is given as
[tex]a = \frac{QE}{m}[/tex]
[tex]a = \frac{(1.6 \times 10^{-19})(8.4 \times 10^4)}{9.11 \times 10^{-31}}[/tex]
[tex]a = 1.48 \times 10^{16} m/s^2[/tex]
Part d)
as we know that it is moving in uniform acceleration so we will have
[tex]v_f = v_i + at[/tex]
[tex]0.095 \times 3 \times 10^8 = 0 + (1.48 \times 10^{16})t[/tex]
[tex]t = 1.93 \times 10^{-9} s[/tex]