A disk-shaped merry-go-round of radius 2.63 m and mass 152 kg rotates freely with an angular speed of 0.526 rev/s. A 51.7 kg person running tangential to the rim of the merry-go-round at 2.76 m/s jumps onto its rim and holds on. Before jumping on the merry-go-round, the person was moving in the same direction as the merry-go-round's rim. What is the final angular speed of the merry-go-round?

Respuesta :

 Explanation:

Given

radius[tex]r=2.63 m[/tex]

[tex]N=0.526 rev/s [/tex]

[tex]\omega =3.30 rad/s[/tex]

mass disc  [tex]M=152 kg[/tex]

mass of person  [tex]m=51.7 kg[/tex]

velocity of Person  [tex]v=2.76 m/s[/tex]

moment of inertia  [tex]I=Mr^2[/tex]

[tex]I=0.5\times 152\times 2.63^2=827.64 kg-m^2[/tex]

Initial angular momentum

[tex]L_i=I\omega +mvr[/tex]

[tex]L_i=827.64\times 3.30+51.7\times 2.76\times 2.63[/tex]

[tex]L_i=2731.212+375.27=3106.48 Js[/tex]

Final Moment inertia

[tex]I_f=0.5Mr^2+mr^2[/tex]

[tex]I_f=(152\cdot 0.5+51.7)\cdot (2.63)^2=1185.243 kg-m^2[/tex]

final angular momentum

[tex]L_f=I_f\omega _f[/tex]

Conserving angular momentum

[tex]L_i=L_f[/tex]

[tex]3106.48=1408.97\times \omega _f [/tex]

[tex]\omega _f=2.62 rad/s[/tex]

The final angular speed of the merry-go-round is mathematically given as

wf=2.62 rad/s

What is the final angular speed of the merry-go-round?

Question Parameter(s):

radius 2.63 m and mass 152 kg

an angular speed of 0.526 rev/s.

A 51.7 kg per

at 2.76 m/s jumps onto its rim and holds on.

Generally, the equation for the Initial angular momentum  is mathematically given as

Li=Iw+mvr

Therefore

Li=827.64* 3.30+51.7* 2.76* 2.63

Li=3106.48 Js

The Final Moment inertia

Lf=0.5Mr^2+mr^2

Lf=(152*0.5+51.7)* (2.63)^2

Lf=1185.243 kg-m^2

In conclusion, angular momentum

3106.48=1408.97*wf

wf=2.62 rad/s

Read more about momentum

https://brainly.com/question/7538238