A 5 meter long ladder leans against a wall. The bottom of the ladder slides away from the wall at the constant rate of 1 3 m/s. How fast is the angle θ between the ground and the ladder changing when the bottom of the ladder is is 3 meters from the wall?

Respuesta :

Answer:9.75 m/s

Explanation:

Given

Length of ladder [tex](L)=5 m[/tex]

Foot the ladder is moving away with speed of [tex]\frac{\mathrm{d} x}{\mathrm{d} t}=13 m/s[/tex]

From diagram

[tex]x^2+y^2=L^2[/tex]------1

at [tex]x=3 [/tex]

[tex]y^2=25-9=16[/tex]

[tex]y=4 m[/tex]

Now differentiating equation 1 w.r.t time

[tex]2x\frac{\mathrm{d} x}{\mathrm{d} t}+2y\frac{\mathrm{d} y}{\mathrm{d} t}=0[/tex]

[tex]x\frac{\mathrm{d} x}{\mathrm{d} t}=-y\frac{\mathrm{d} y}{\mathrm{d} t}[/tex]

[tex]3\times 13=-4\times \frac{\mathrm{d} y}{\mathrm{d} t}[/tex]

[tex]\frac{\mathrm{d} y}{\mathrm{d} t}=-\frac{3\times 13}{4}=-9.75 m/s[/tex]

negative indicates distance is decreasing with time

Ver imagen nuuk