A spaceship of mass 2.30 x 10^6 kg is cruising at a speed of 6.00 x 10^6 m/s when the antimatter reactor fails, blowing the ship into three pieces. One section, having a mass of 5.00 x 10^5 kg , is blown straight backward with a speed of 1.80 x 10^6 m/s . A second piece, with mass 8.40 x 10^5 kg , continues forward at 8.00 x 10^5 m/s .
Part A) What is the speed of the third piece? Express your answer with the appropriate units.

Respuesta :

Answer:[tex]v_3=14.61\times 10^6 m/s[/tex]

Explanation:

Given

mass of spaceship [tex]M=2.30\times 10^6 kg[/tex]

speed of spaceship [tex]u=6\times 10^6 m/s[/tex]

After blowing in to three pieces

[tex]m_1=5\times 10^5 kg[/tex]

[tex]v_1=-1.80\times 10^6 m/s[/tex]

[tex]m_2=8.40\times 10^5 kg[/tex]

[tex]v_2=8\times 10^5 m/s[/tex]

[tex]m_3=M-m_1-m_2[/tex]

[tex]m_3=2.30\times 10^6-5\times 10^5-8.40\times 10^5[/tex]

[tex]m_3=9.6\times 10^5 kg [/tex]

consider forward motion to be Positive

Let [tex]v_3[/tex] be the velocity of third particle

conserving momentum as no external Force is applied

[tex]Mu=m_1v_1+m_2v_2+m_3v_3[/tex]

[tex]2.30\times 10^6\times 6\times 10^6=5\times 10^5\cdot (-1.80\times 10^6)+8.40\times 10^5\times 8\times 10^5+9.6\times 10^5\cdot v_3[/tex]

[tex]13.8\times 10^{12}=-0.9\times 10^{12}+0.672\times 10^{12}+9.6\times 10^5\cdot v_3[/tex]

[tex]v_3=\frac{14.028\times 10^{12}}{9.6\times 10^5}[/tex]

[tex]v_3=14.61\times 10^6 m/s[/tex]