Respuesta :

Answer:

NO

Step-by-step explanation:

Let the consecutive numbers be x and x + 1

Given condition is their reciprocals sum is equal to 3/4

[tex]\frac{1}{x} +\frac{1}{x+1} =\frac{3}{4}[/tex]

[tex]\frac{2x+1}{x^2+x}=\frac{3}{4}[/tex]

[tex]8x+4=3x^2+3x[/tex]

[tex]3x^2-5x-4=0[/tex]

Find the discriminant for the above quadratic equation

Foe a given quadratic equation [tex]ax^2+bx+c=0[/tex] the discriminant = [tex]b^2-4ac[/tex]

Here a = 3,b = -5,c = -4

Discriminant = [tex](-5)^2-4\times 3\times (-4)[/tex] =78 >0

If a quadratic equation has discriminant > 0 it has distinct real roots

The roots are [tex]\frac{-b+\sqrt{b^2-4ac} }{2a}[/tex] and   [tex]\frac{-b-\sqrt{b^2-4ac} }{2a}[/tex]

Here the roots are [tex]\frac{5+\sqrt{78} }{6} and \frac{5-\sqrt{78} }{6}[/tex]

They are not integers So there are no consecutive pair of integers which follow the given condition