Answer:
a) T2 = 332.342 K
b) ΔU = 1245.355 J/mol
c) W = - 986.738 J
Explanation:
ideal gas:
∴ n = 2 mol
∴ P1 = 1.00 atm
∴ T1 = 0 °C = 273 K
∴ P2 = 2.00 atm
∴ Cp,m = 29.3 J/mol.K
⇒ Cv,m = Cp,m - R = 29.3 - 8.314 = 20.986 J/mol.K
∴ Q = 0.........heat-insulated cylinder
⇒ W = ΔU
∴ ΔU = CvΔT
∴ W = - PδV......compressed reversibly
ideal gas:
⇒ PδV + VδP = RδT
⇒ PδV = RδT - VδP
⇒ RδT - VδP = - Cv,mδT,,,,,first law
⇒ RδT - (RT/P)δP = - Cv,mδT
⇒ RδT + Cv,mδT = (RT/P)δP
⇒ (R+Cv,m)δT/T = RδP/P
⇒ ((R+Cv,m)/R)∫δT/T = ∫δP/P
⇒ ((R+Cv,m)/R) Ln(T2/T1) = Ln (P2/P1)
∴ (R+Cv,m)/R = 3.524
⇒ Ln (T2/T1) = Ln (P2/P1) / 3.524
⇒ Ln (T2/T1) = Ln (2.00/1.00) / 3.524
⇒ Ln (T2/T1) = 0.693 / 3.524 = 0.1967
⇒ T2/T1 = 1.2174
⇒ T2 = (273K)×(1.2174) = 332.342 K
b) ΔU = Cv,mΔT
⇒ ΔU = (20.986 J/mol.K)(332.342 K - 273 K)
⇒ ΔU = 1245.355 J/mol
c) W = - PδV
⇒ W = - P2V2 + P1V1
∴ P1V1 = nRT1 = (2mol)(8.314 J/mol.K)(273 K) = 4539.444 J
∴ P2V2 = nRT2 = (2mol)(8.314 J/mol.K)(332.342 K) = 5526.183 J
⇒ W = - 5526.183 J + 4539.444 J = - 986.738 J