Answer:
Option 4 - 25
Step-by-step explanation:
Given : Function [tex]f(x)=x^2-10x-4[/tex]
To find : How many zero pairs must be added to the function in order to begin writing the function in vertex form?
Solution :
The vertex form is [tex]y=(x-h)^2+k[/tex]
Let function [tex]y=x^2-10x-4[/tex]
Applying completing the square,
Add and subtract square of half of the coefficient of x,
i.e. [tex](\frac{-10}{2})^2=(5)^2[/tex]
[tex]y=x^2-10x-4+(5)^2-(5)^2[/tex]
[tex]y=x^2-2\times 5\times x+(5)^2-4-25[/tex]
[tex]y=(x-5)^2-29[/tex]
Therefore, the zero pairs must be added to the function in order to begin writing the function in vertex form is 25.
So, Option 4 is correct.