Respuesta :

Answer:

Option 4 - 25

Step-by-step explanation:

Given : Function [tex]f(x)=x^2-10x-4[/tex]

To find : How many zero pairs must be added to the function  in order to begin writing the function in  vertex form?

Solution :

The vertex form is [tex]y=(x-h)^2+k[/tex]

Let function [tex]y=x^2-10x-4[/tex]

Applying completing the square,

Add and subtract square of half of the coefficient of x,

i.e. [tex](\frac{-10}{2})^2=(5)^2[/tex]

[tex]y=x^2-10x-4+(5)^2-(5)^2[/tex]

[tex]y=x^2-2\times 5\times x+(5)^2-4-25[/tex]

[tex]y=(x-5)^2-29[/tex]

Therefore, the zero pairs must be added to the function  in order to begin writing the function in  vertex form is 25.

So, Option 4 is correct.