A place-kicker must kick a football from a point 36.0 m (about 40 yards) from the goal. Half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of 22.2 m/s at an angle of 51.0° to the horizontal.?

Respuesta :

Answer:

a).The ball fall by d=8.75m height  

b). The ball is falling at time t=1.63s

Explanation:

The problem have no question to answer however typical questions are:

a).By how much does the ball  clear or fall short of clearing the crossbar?

b) Does the ball approach the crossbar while still rising or while  falling?

[tex]a_x=0[/tex],[tex]a_y=-g [/tex], [tex]v_{xi}=v_i*cos(51.0)[/tex],[tex]v_{yi}=v_i*sin(51.0)[/tex].

The time to get the distance

a).

[tex]t=\frac{x_f}{v_xi} =\frac{36.0m}{22.2m/s*cos(51.0)}[/tex]

[tex]t=2.57s[/tex]

Now find the ball's height at this time

[tex]h_f=h_i+v_{yi}*t+\frac{1}{2}*a*t^2[/tex]

[tex]h_f=22.2m/s*sin(51.0)*(2.57s)-\frac{1}{2}*9.8m/s^2*(2.57s)^2[/tex]

[tex]h_f=11.8m[/tex]

[tex]h=h_f-3.05m=11.8-3.05=8.75m[/tex]

b).

Now find the reach maximum height if the football reaches is is maximum height

[tex]v_{fy}=v_{f}+a_y*t[/tex]

[tex]v_f=0[/tex]

Solve to t

[tex]t=\frac{-v_{yi}}{g}=\frac{-22.2*sin(51)}{-9.8m/s^2}[/tex]

[tex]t=1.76s[/tex]