Answer:
[tex]Cos(x-\frac{3\pi}{2})=-\frac{7}{25}[/tex]
Step-by-step explanation:
Remember that [tex]cos(x-y)=cos(x)cos(y)+sin(x)sin(y)[/tex]
Then,
[tex]cos(x-\frac{3\pi}{2})=cos(x)cos(\frac{3\pi}{2})+sin(x)sin(\frac{3\pi}{2})\\[/tex]
But [tex]cos(\frac{3\pi}{2})=0[/tex] and [tex]sin(x)=\frac{7}{25}[/tex]
Then
[tex]cos(x-\frac{3\pi}{2})=cos(x)*0+\frac{7}{25}*sin(\frac{3\pi}{2})\\=\frac{7}{25}*(-1)=\frac{-7}{25}[/tex]