Respuesta :

Answer:

96.16 square in

Step-by-step explanation:

Given information: In parallelogram ABCD, AD = 12 in, m∠C = 46º, m∠DBA = 72º.

Opposite angles of a parallelogram are congruent.

[tex]m\angle A=m\angle C=72^{\circ}[/tex]

According to the angle sum property, the sum of interior angles of a triangle is 180º.

[tex]\angle ADB=180.00^{\circ}-A-B=180.00^{\circ}-46.00^{\circ}-72.00^{\circ}=62.00^{\circ}[/tex]

Law of Sine:

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

Using Law of Sine we get

[tex]AB=\frac{\sin(\angle ADB)\cdot b}{\sin(\angle ABD)}=\frac{\sin(62.00^{\circ})\cdot 12.00}{\sin(72.00^{\circ})}=11.14[/tex]

It means the base of parallelogram is 11.14 in.

Draw an altitude on AB from D.

In a right angle

[tex]\sin \theta = \frac{opposite}{hypotenuse}[/tex]

In triangle ADE,

[tex]\sin A= \frac{h}{12}[/tex]

[tex]\sin (46)= \frac{h}{12}[/tex]

[tex]\sin (46)\times 12=h[/tex]

[tex]h\approx 8.632[/tex]

The height of the parallelogram is 8.632.

The area of parallelogram is

[tex]Area=base\times height[/tex]

[tex]Area=11.14\times 8.632[/tex]

[tex]Area=96.16[/tex]

Therefore, the area of parallelogram is 96.16 square in.

Ver imagen erinna

Answer:

96.1666

Step-by-step explanation:

RSM fam lol lmào