QTR is a right triangle TQR is a right triangle QS is an altitude which statements are true

Answer:
4)
[tex] (TQ)^2+(QR)^2=(ST)(TR)+(SR)(TR)[/tex]
Explanation:
[tex] m\angle QTR=m\angle SQR\\
m\angle TSQ=m\angle TQR=90°\\
\implies \Delta TSQ \sim \Delta TQR\\
\implies \frac{TQ}{TR}=\frac{TS}{TQ}\\
\implies \boxed{(TQ)^2= (TS)(TR)}\\
\text{Similarly, use triangles RSQ and RQT to get:}\\
\boxed{(QR)^2=(SR)(TR)}[/tex]
Now add the two equations to get the answer.
Answer:
(TQ)² + (QR)² = (ST) (QS) + (SR) (QS)
Step-by-step explanation:
PROOF:
QTR is a right triangle TQR is a right triangle QS is an altitude
From right angle theorem
Side √TQ² = √(QS² + ST²) reason ∠QST is right angled
Side √QR² = √(SR² + QS²) reason ∠RSQ is right angled
QED