Given a sequence is defined by the explicit definition LaTeX: t_n=\:n^2+nt n = n 2 + n, find the 4th term of the sequence. (ie LaTeX: t_4t 4)

Answer:
3,5,9,17,33
Step-by-step explanation:
The explicit definition is;
[tex]t_n= {2}^{n} + 1[/tex]
When n=1, we get:
[tex]t_1= {2}^{1} + 1 = 2 + 1 = 3[/tex]
When n=2, we obtain:
[tex]t_2= {2}^{2} + 1 = 4 + 1 = 5[/tex]
When n=3, we get:
[tex]t_3= {2}^{3} + 1 = 8+ 1 = 9[/tex]
When n=4, we get:
[tex]t_4= {2}^{4} + 1 = 16 + 1 = 17[/tex]
When n=5, we obtain:
[tex]t_5= {2}^{5} + 1 = 32 + 1 = 33[/tex]
The sequence generated is 3,5,9,17,33,...
The third choice is correct.