Answer:
It is proved that [tex]6\cos ^{2}x -3 = 3 - 6\sin ^{2} x[/tex] .
Step-by-step explanation:
We already have the identity of x as [tex]\sin ^{2}x + \cos ^{2}x = 1[/tex] .......... (1) .
So, from equation (1) we can write that
[tex]\cos ^{2} x = 1 - \sin ^{2} x[/tex]
⇒ [tex]6\cos ^{2} x = 6 - 6 \sin ^{2} x[/tex]
⇒ [tex]6\cos ^{2} x -3 = 6 - 6 \sin ^{2}x -3[/tex]
⇒ [tex]6\cos ^{2}x -3 = 3 - 6\sin ^{2} x[/tex]
Hence, it is proved that [tex]6\cos ^{2}x -3 = 3 - 6\sin ^{2} x[/tex] . (Answer)