Answer:
1. [tex]a = 0.87m/s^2[/tex]
2. [tex]\omega_2= 1.5*10^{-2}rad/s[/tex]
Explanation:
For part 1, we need to make a sum of torque at the rotating point:
[tex]m*g*sin(\theta)*r=I*\alpha=2*m*r^2*(a/r)[/tex]
Solving for a:
[tex]a = g*sin(\theta)/2 = 0.87m/s^2[/tex]
For part 2, we need the new moment of inertia with the sand ring:
[tex]I1 = 0.12 kg.m^2[/tex]
[tex]I2=I1+m2*r2^2=0.2 kg.m^2[/tex]
By conservation of the angular momentum:
[tex]I1*\omega_1=I2*\omega_2[/tex]
[tex]\omega_2=I1*\omega_1/I2=1.5*10^{-2}rad/s[/tex]