Answer:
Explanation:
The DE corresponding to LRC series circuit is
Lq" + Rq' +1/c q = E
[tex]\frac{5}{6} q" + 10 q' + 60 q = 1200[/tex]
q" + 12q' + 72 q = 1440
considering only homegeneous part
q" + 12q'+ 72 q= 0
the auxillary equation is [tex]m^2 + 12m + 72 = 0[/tex]
[tex]m = \frac{-12 \pm \sqrt{144-288}}{2}[/tex]
[tex]m = -6 \pm 6i[/tex]
[tex]m_1 = -6 -6i[/tex]
[tex]m_2 = -6 + 6i[/tex]
the solutiion is
[tex]qh = e^{-6t} [c_1cos6t + c_2 sin 6t][/tex]
solve for particular siolution
q" + 12q'+ 72 q= 0
let qp = a be the solution
0 + ) + 72a = 1440
a = 20
general solution is
q = qh + qp
[tex]q =e^{-6t} [c_1cos6t + c_2 sin 6t] + 20[/tex][/tex]
applying initial value i(0) = q(0) = 0
also i(t) = q'(t)
[tex]i(t) = e^{-6t} [6c_2 cos6t +6 c_1 sin 6t] - e^{-6t} [c_1 c_2 cos6t + c_2 sin 6t][/tex]
q(0) = 0
[tex]c_1 +5 = - 0[/tex]
[tex]c_1 = -5[/tex]
i(0) = 0
[tex]6c_2 - 6c_1 = 0 [/tex]
[tex]c_2 = c_1 = -5[/tex]
[tex]q(t0 = 5 - 5e^{-6t}[ coas(6t) + sin(6t)][/tex]
[tex]i(t) = e^{-6t} ( -30 cos(6t) + 30 sin(6t) - 6e^{-6t} ( -5cos(6t) - 5sin(6t))[/tex]
[tex]= e^{-6t} [60 sin (6t)][/tex]