Respuesta :

Answer:

When [tex]b=3[/tex]

[tex]a=\frac{45}{49}[/tex]

Step-by-step explanation:

Given

[tex]a=5[/tex]

[tex]b=7[/tex]

[tex]a[/tex] ∝ [tex]b^2[/tex]  [As [tex]a[/tex] varies directly with square of [tex]b[/tex]]

∴ [tex]a=kb^2[/tex]

where [tex]k[/tex] represents the constant of proportionality.

Plugging in values to find [tex]k[/tex]

[tex]5=k(7)^2[/tex]

[tex]5=k(49)[/tex]

Dividing both sides by 49.

[tex]\frac{5}{49}=\frac{k(49)}{49}[/tex]

[tex]\frac{5}{49}=k[/tex]

[tex]k=\frac{5}{49}[/tex]

When [tex]b=3[/tex]

[tex]a=\frac{5}{49}(3)^2[/tex]

[tex]a=\frac{5}{49}(9)[/tex]

∴[tex]a=\frac{45}{49}[/tex]