Answer:
For w = 18 units perimeter is minimum
P = 2(18 + w)
Step-by-step explanation:
Given;
Area of the rectangle = 324 units²
P is the perimeter
w is the width
Let L be the length of the rectangle
therefore,
P = 2(L + w) ............(1)
also,
Lw = 324
or
L = [tex]\frac{324}{w}[/tex] ..........(2)
substituting 2 in 1
P = [tex]2(\frac{324}{w} + w)[/tex]
now,
for minimizing the perimeter
[tex]\frac{dp}{dw}=\frac{d(2(\frac{324}{w} + w))}{dw}[/tex] = 0
or
[tex]2((-1)\frac{324}{w^2}+1)[/tex] = 0
or
[tex](-1)\frac{324}{w^2}+1[/tex] = 0
or
[tex](-1)\frac{324}{w^2}[/tex] = -1
or
w² = 324
or
w = 18 units
For w = 18 units perimeter is minimum
therefore,
from 2
L = [tex]\frac{324}{18}[/tex]
or
L = 18 units
objective function for P is:
P = 2(18 + w)