Respuesta :
Answer:
a) v = [tex]v = 4.70\times 10^{-3} m/s[/tex]
b)V = 0.059 m/s
Explanation:
given data:
speed of frozen lake is 0.510 m/s
mass of rock + man is 97.5 kg
mass of rock is 0.320 kg
speed of throwing rock is 16.5 kg
By conservation of momentum...
(m + M)(v) = mv + Mv
(97.5)(0.510) = (0.320)(16.5) + (97.5 - 0.320)(v)
[tex]v = 4.70\times 10^{-3} m/s[/tex]
for backward..
(m + M)(v) = mv + Mv
[tex](97.5)(4.70\times 10^{-3}) = -(.32)(16.5) + (97.5 - .32)(v)[/tex]
V = 0.059 m/s
Answer:
0.45734 m/s
0.56601 m/s
Explanation:
M+m = Mass of sled, man, and rock = 97.5 kg
m = Mass of rock = 0.320 kg
M = Mass of Man and sled = 97.5 - 0.320 = 97.18 kg
[tex]u_1[/tex] = Velocity of rock = 16.5 m/s
[tex]u_2[/tex] = Velocity of sled
Here the momentum of the system is conserved
[tex](m+M)v=mu_1+Mu_2\\\Rightarrow u_2=\frac{(m+M)v-mu_1}{M}\\\Rightarrow u_2=\frac{(97.5)0.510-0.320\times 16.5}{97.18}\\\Rightarrow u_2=0.45734\ m/s[/tex]
The speed of the sled is 0.45734 m/s
In the case of opposite direction the speed will become negative
[tex](m+M)v=mu_1+Mu_2\\\Rightarrow u_2=\frac{(m+M)v-mu_1}{M}\\\Rightarrow u_2=\frac{(97.5)0.510-(-0.320\times 16.5)}{97.18}\\\Rightarrow u_2=0.56601\ m/s[/tex]
The speed of the sled is 0.56601 m/s