Respuesta :

Answer:

q = 91

Step-by-step explanation:

We are going to use formula for finding roots to solve this questions;

Using this two formula;

ax²  +  bx  + c = 0---------(1)

Let  ∝  and  β be the two roots of the quadratic equation above, then

x²   -  (∝ + β)x   + ∝β  =  0  --------(2)

comparing the two equations above

sum of the roots of a quadratic equation is : ∝ + β = -b/a -----(3)

Products of the root of a quadratic equation is : ∝β = c/a ------(4)

We can now start solving our question;

The difference between the roots of the quadratic equation x^2−20x+q=0 is 6. Find q.

Let the two roots be  ∝  and  ∝ - 6

Sum of the roots =  ∝ +  ∝ - 6 = 2∝ - 6 -----------(5)

Product of the roots =  ∝( ∝ -  6)  =  ∝²  -   6∝ ------(6)

From equation (3) and equation (4)

sum of a quadratic equation = -b/a

Product of a quadratic equation = c/a

so;

From equation (5) and (6)

Sum of the roots = 2∝ - 6 = -b/a  ---------(7)

Product of the roots =   ∝²  -   6∝ = c/a  --------(8)

But again the equation given to us is;

x²−20x+q=0

comparing this with the standard equation, equation(1)

   a = 1           b = 20    and    c = q

From equation (7)  :  2∝ - 6  = -b/a

                                  2∝ - 6 = -20/1

                                   2∝ - 6 = -20

                                   Add  6 to both-side of the equation

                                    2∝ - 6 + 6 = -20+ 6

                                     2∝= -14

                                     Divide both-side of the equation by 2

                                      ∝ =  -7

Also, from equation (8) :   ∝²  -   6∝ = c/a

                                            ∝²  -   6∝ = q/1

                                              ∝²  -   6∝ = q

But  ∝  = -7, so we will substitute  ∝ = -7 in the above equation to get the value of q;

∝²  -   6∝ = q

(-7)²  - 6(-7) = q

49 + 42 = q

91  =  q

Therefore the value of q = 91

[To test the correctness of our answer, lets substitute q back into the equation and solve;

x²−20x+91=0

x² - 7x - 13x + 91 = 0

x(x-7) -13(x-7) = 0

(x-7)(x-13)= 0

x = 7 or x=13

The difference between 7 and 13 is 6.]

Therefore the value of q is 91

Answer: The Value of q = 91

Step-by-step explanation:

Given :

Quadratic Equation -

[tex]x^2 - 20x +q = 0[/tex]  ------- (1)

Calculation :

If [tex]ax^2 +bx+c=0[/tex] is a quadratic equation and let [tex]\alpha[/tex] and [tex]\beta[/tex] are the roots of the equation then, sum of roots :

[tex]\alpha +\beta = \dfrac{-b}{a}[/tex]

product of roots :

[tex]\alpha \beta =\dfrac {c}{a}[/tex]

We know that the quadratic equation in terms of sum of roots and product of roots is

[tex]x^2-(\alpha +\beta )x+(\alpha \beta )=0[/tex] ------ (2)

let the roots of equation (1) is [tex]\alpha[/tex] and [tex]\beta[/tex] than it is given that

[tex]\alpha = \beta +6[/tex]  ------- (3)

then equation (2) becomes

[tex]x^2 - (2\beta +6)x+(\beta (\beta +6))=0[/tex] ------ (4)

Now compairing equation (1) and (4) we have

[tex]2\beta + 6 = 20[/tex]

therefore ,

[tex]\beta = 7[/tex] ------ (5)

from equation (3) and (5)

[tex]\alpha =13[/tex] ------ (6)

From equation (1) and (4) we know that,

[tex]q = \beta (\beta +6)[/tex]

therefore the value of [tex]q = 91[/tex]

For more information, refer the below link

https://brainly.com/question/17177510?referrer=searchResults