Respuesta :

Answer:

(5, -2)

Step-by-step explanation:

The equation of the ellipse is given by:

              [tex]$ \frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1 $[/tex]

where [tex]$ (h, k)  $[/tex] is the center of the ellipse.

The given equation of the ellipse is:

x² + 2y² - 10x + 8y + 25 = 0.

We have to reduce to the standard form so that we can compare and determine the center of the ellipse.

Subtracting [tex]25[/tex] from the equation on both sides, we get:

x² - 10x + 2y² + 8y + 25 - 25 = - 25

[tex]$ \implies x^2 - 10x + 2y^2 + 8y = - 25 $[/tex]

[tex]$ \implies x^2 - 10x + 2(y^2 + 4y) = -25 $[/tex]

The next step would be complete the squares. Let us complete [tex]x[/tex] first.

[tex]x^2 - 10x = x^2 - 5(2)x \\= x^2 - 5(2)x - 25 + 25  \\= (x - 5)^2 + 25[/tex]

Now for [tex]y[/tex].

[tex]2(y^2 + 4y) =2\{ y^2 + 2(2)y \} \\\\= 2\{y^2 + 2(2)y + 4 - 4 \} \\\\= 2\{(y + 2y)^2 - 4\} \\\\= 2\{(y + 2)^2\} - 8[/tex]

Therefore the equation becomes:

(x - 5)² + 2(y + 2)² = -25 + 25 + 8

(x - 5)² + 2(y - 2)² = 8

Since the [tex]R.H.S.[/tex] needs 1, we divide the entire equation by 8.

⇒ [tex]$ \frac{(x - 5)^2}{8} + 2\frac{(y - 2)^2}{8} = 1 $[/tex]

[tex]$ \implies \frac{(x - 5)^2}{8} + \frac{(y + 2)^}{4} = 1 $[/tex]

Comparing with standard form we get:

[tex]$ (x - h)^2 = (x - 5)^2 $[/tex] and [tex]$ (y - k)^2 = (y + 2)^2 $[/tex]

⇒ (h,k) = (5,-2)

∴ The center of the ellipse is (5,-2).