Answer:
u = 477 m/s
Explanation:
[tex]\delta H + \delta E_k + \delta E_p = \dot Q - \dot W_s[/tex]
[tex]\delta E_p = \dot Q = \dot W_s = 0[/tex]
[tex]\delta E_k = \delta H [/tex]
[tex]\frac{mv^2}{2} = - \dot m (H_{out} - H_{in})[/tex]
[tex]u^2 = 2(H_{in} - H_{out})[/tex]
[tex]= 2 (2974 - 2860) kj/kg \times \frac{10^{3} N m}{1 kg} \times\frac{ 1kg m/s2}[/tex]{1 N}
[tex]u^2 = 2.28\times 10^5 m62/s^2[/tex]
u = 477 m/s