Respuesta :

Answer:

g/f = {(-1, 2)}

domain of g/f = {-1}

Step-by-step explanation:

Given,

f =​ {(-1, 4)​,(1, 9)​,(4, 0)​},

g = ​{(-1, -8)​,(2, -7)​,(4, 8)​,(5, -9)​}

So, Domain of f = {-1, 1, 4},

Domain of g = {-1, 2, 4, 5}

Since,

[tex]\frac{g}{f}(x) = \frac{g(x)}{f(x)}[/tex]

Thus, domain of g/f = Domain of f ∩ Domain of g = {-1, 4}

If x = -1,

[tex]\frac{g}{f}(-1) = \frac{g(-1)}{f(-1)}=\frac{-8}{-4}=2[/tex]

If x = 4,

[tex]\frac{g}{f}(4) = \frac{g(4)}{f(4)}=\frac{8}{0}=\infty (\text{ not possible})[/tex]

Hence, the domain of g/f = {-1}

And, g/f = {(-1, 2)}