Answer:
the skateboard speed is maximum for when the ball bounces
Explanation:
To determine which speed is maximum we use the moment, for each case
Case 1. Catch the ball
Before crash
p₀ = M v
After catching
[tex]p_{f}[/tex] = (m + M) [tex]v_{f}[/tex]
po = [tex]p_{f}[/tex]
M v = (m + M) [tex]v_{f}[/tex]
[tex]v_{f}[/tex] = M / (m + M) v
[tex]v_{f}[/tex] = v M / (m + M)
Case 2. The ball bounces.
In this case the final speed of the ball is [tex]v_{f}[/tex] = -v
[tex]p_{f}[/tex] = m [tex]v_{f2}[/tex] + M [tex]v_{f}[/tex]
[tex]p_{f}[/tex] = m [tex]v_{f2}[/tex] - M v
po = [tex]p_{f}[/tex]
M v = m [tex]v_{f2}[/tex] - M v
[tex]v_{f2}[/tex] = 2M v / m
Let's find the relationship between speeds
[tex]v_{f1}[/tex] / [tex]v_{f2}[/tex] = (v M / (m + M)) / (2M v / m)
[tex]v_{f1}[/tex] /[tex]v_{f2}[/tex] = m / (2 (m + M)
[tex]v_{f1}[/tex] / [tex]v_{f2}[/tex] = ½ [m / M (1 + m / M)]
As m <M we can approximate (1 + m /M) = 1
[tex]v_{f1}[/tex] / [tex]v_{f2}[/tex] = ½ m / M
[tex]v_{f2}[/tex] = (2 M / m) [tex]v_{f1}[/tex]
Consequently vf2 is greater than the speed vf1, so the skateboard speed is maximum for when the ball bounces