Respuesta :
Answer:
The coordinates of B are (1,-5).
Step-by-step explanation:
To find the coordinates of point [tex]B[/tex] we will apply section formula.
Its used to find out if any line segment is of any [tex]m_1: m_2[/tex] ratios.
As the lie segment is joining the points internally we will use section formula for internal points.
Lets say that [tex]B[/tex] is having coordinates [tex](k,l)[/tex] then [tex]k=\frac{m_1(x_2) +m_2(x_1)}{m_1+m_2}[/tex] and [tex]l=\frac{m_1(y_2) +m_2(y_1)}{m_1+m_2}[/tex]
Now we have [tex]A=(8,7)[/tex] we call it [tex](x_1,y_1)[/tex] then [tex]C=(7,-13)[/tex] we call it [tex](x_2,y_2)[/tex].
And [tex]m_1=3[/tex],[tex]m_2=2[/tex]
Plugging all the values in section formula we have.
[tex]k=\frac{m_1(x_2) +m_2(x_1)}{m_1+m_2}[/tex]
[tex]k=\frac{3(7) +2(-8)}{2+3}[/tex]
[tex]= \frac{21-16}{5}= 1[/tex]
Similarly
[tex]l=\frac{m_1(y_2) +m_2(y_1)}{m_1+m_2}[/tex]
[tex]l=\frac{3(-13) +2(7)}{2+3}[/tex]
[tex]l=\frac{-39+14}{5}= -5[/tex]
So the coordinates of [tex]B =(1,-5)[/tex]
The coordinates of B are (-1, -5).
What is section formula?
The Section formula is used to find the coordinates of the point that divides a line segment (externally or internally) into some ratio.
We have,
A(-8,7) and C(7,-13) and AB:BC = 3:2.
let the coordinates of B is (x,y)
Using section formula,
x= [tex]\frac{mx_1+nx_2}{m+n}[/tex] and y= [tex]\frac{my_1+ny_2}{m+n}[/tex]
So,
x= 3*7+2(-8)/3+2
x= 21-16/5
x= -5/5
x=-1.
y= 3(-13)+2*7/3+2
y= -39+14/5
y= -25/5
y=-5
Hence, the coordinates of B is (-1, -5)
Learn more about section formula here:
https://brainly.com/question/11888968
#SPJ5