Answer: 2.424
Step-by-step explanation:
As per given , we have
For [tex]n_1=45[/tex] ,
sample mean : [tex]\overline{x}_1=23500[/tex]
Sample standard deviation : [tex]s_1= 600[/tex]
For [tex]n_2=40[/tex] ,
sample mean : [tex]\overline{x}_2=23140[/tex]
Sample standard deviation : [tex]s_2= 750[/tex]
Test statistic :
[tex]t=\dfrac{\overline{x}_1-\overline{x}_2}{\sqrt{\dfrac{s_1^2}{n_1}+\dfrac{s_2^2}{n_2}}}[/tex]
i.e. [tex]t=\dfrac{23500-23140}{\sqrt{\dfrac{600^2}{45}+\dfrac{750^2}{40}}}[/tex]
Simplify , we get
[tex]t=\dfrac{360}{148.535}=2.42367922035\approx2.424[/tex]
Hence, the calculated value of t statistic= 2.424