Respuesta :

Answer:

D)  The given expression [tex](\frac{3x}{x+ 3})   + (\frac{x+2}{x}) = \frac{4x^{2}   + 5x + 6}{(x+3)(x)}[/tex]

Step-by-step explanation:

Here, the given expression is : [tex](\frac{3x}{x+ 3})   + (\frac{x+2}{x})[/tex]

Let us simplify the given expression be taking LCM of the denominator and making a common base denominator.

We get : [tex](\frac{3x}{x+ 3})   + (\frac{x+2}{x})  = \frac{3x(x)  + (x+2)(x+3)}{(x+3)(x)} \\\implies\frac{3x^{2}  +   (x+2)(x+3)}{(x+3)(x)}[/tex]

Solving [tex](x+2) (x+3) = x^{2}  + 2x + 3x + (2)(3)  = x^{2}  + 5x + 6[/tex]

Now, substitute the above value into the given expression :

[tex]\frac{3x^{2}  +   (x+2)(x+3)}{(x+3)(x)} \implies\frac{3x^{2}  +   x^{2}  + 5x + 6}{(x+3)(x)}\\= \frac{4x^{2}   + 5x + 6}{(x+3)(x)}[/tex]

Hence, the given expression [tex](\frac{3x}{x+ 3})   + (\frac{x+2}{x}) = \frac{4x^{2}   + 5x + 6}{(x+3)(x)}[/tex]

Answer:

The correct answer is [tex]\frac{4x^2+5x+6}{x(x+3)}[/tex]

Step-by-step explanation:

I took the quiz! I hope this helps! :)

(btw, if anyone ever gives you links, don't click on them, they're viruses)