Answer:
a).[tex]K=528.92 \frac{N}{m}[/tex]
b).[tex]m=4.84kg[/tex]
Explanation:
a).
The work of the spring is find by the formula:
[tex]w_s =\frac{1}{2}*k*x^2[/tex]
So knowing the work can find the constant K'
[tex]3.2J =\frac{1}{2}*k*(0.11m)^2[/tex]
Solve for K'
[tex]K=\frac{2*W_s}{x^2}=\frac{2*3.2J}{0.11m^2}[/tex]
[tex]K=528.92 \frac{N}{m}[/tex]
b).
The force of the spring realice a motion so using the force and knowing the accelerations can find the mass
[tex]F=m*a[/tex]
[tex]m=\frac{F}{a}=\frac{K*x}{a}[/tex]
[tex]m=\frac{528.9*0.11m}{12m/s^2}[/tex]
[tex]m=4.84kg[/tex]