Answer:
[tex]\omega=943\ rad/s[/tex]
Explanation:
Given that,
Speed of the car, v = 40 mph
Energy required, [tex]E=3.2\times 10^7 J[/tex]
Radius of the flywheel, r = 0.6 m
Mass of flywheel, m = 400 kg
The kinetic energy of the disk is given by :
[tex]E_k=\dfrac{1}{2}I\omega^2[/tex]
I is the moment of inertia of the disk, [tex]I=\dfrac{mr^2}{2}[/tex]
[tex]\omega^2=\dfrac{2E_k}{I}[/tex]
[tex]\omega^2=\dfrac{2E_k}{\dfrac{mr^2}{2}}[/tex]
[tex]\omega^2=\dfrac{2\times 3.2\times 10^7}{\dfrac{400\times (0.6)^2}{2}}[/tex]
[tex]\omega=942.80\ rad/s[/tex]
or
[tex]\omega=943\ rad/s[/tex]
So, the angular speed of the disk is 943 rad/s. Hence, this is the required solution.