You have a wire that is 38 cm long. You wish to cut it into two pieces. One piece will be bent into the shape of a square. The other piece will be bent into the shape of a circle. Let A represent the total area of the square and the circle. What is the circumference of the circle when A is a minimum?

Give your answer to two decimal places

Respuesta :

Answer:16.71 cm

Step-by-step explanation:

Given

Length of wire L=38 cm

One piece is bent in the form of square and another in the form of circle

let x be the length of circle

therefore length of square side [tex]\frac{38-x}{4}[/tex]

A=total area of square and circle

radius of circle [tex]r=\frac{x}{2\pi }[/tex]

area of circle [tex]A_c=\pi r^2=\pi \times (\frac{x}{2\pi })^2[/tex]

Area of square [tex]A_s=(\frac{38-x}{4})^2[/tex]

[tex]A=\pi \times (\frac{x}{2\pi })^2+(\frac{38-x}{4})^2[/tex]

To get the minimum value of A we get

[tex]\frac{\mathrm{d} A}{\mathrm{d} x}=\frac{2x}{4\pi }-\frac{2(38-x)}{16}[/tex]

[tex]\frac{\mathrm{d} A}{\mathrm{d} x}=0[/tex]

[tex]\frac{x}{4\pi }=\frac{38-x}{16}[/tex]

[tex]x=\frac{38\pi }{4+\pi }[/tex]

Therefore circumference of circle

[tex]x=\frac{38\pi }{4+\pi }=\frac{119.396}{7.142}=16.717 cm[/tex]