Please make sure that it's the correct answer!
Simplify cube root of 5 over fourth root of 5.

A. 5 to the power of one fourth
B. 5 to the power of one twelfth
C. 5 to the power of seven twelfths
D. 5 to the power of four thirds

Respuesta :

Answer:

B

Step-by-step explanation:

In the attached file

Ver imagen ujalakhan18

Answer:

[tex]5^{\frac{1}{12}}[/tex]

Step-by-step explanation:

The given expression is:

[tex]\frac{\sqrt[3]{5} }{\sqrt[4]{5} }[/tex]

To simplify this expression we need to apply the exponent property that allows to transform from radical expression to a power with a fraction exponent, the property states:

[tex]\sqrt[n]{x^{m} }=x^{\frac{m}{n} }[/tex]

Applying the property we have:

[tex]\frac{\sqrt[3]{5} }{\sqrt[4]{5} }\\\frac{(5)^{\frac{1}{3} } }{(5)^{\frac{1}{4} } } \\5^{\frac{1}{3}-\frac{1}{4}}=5^{\frac{4-3}{12}}=5^{\frac{1}{12}}[/tex]

Therefore, the simplified expression is [tex]5^{\frac{1}{12}}[/tex]