Respuesta :

Answer:

[tex]x=\frac{5\pm\sqrt{47}i}{2}[/tex]

Step-by-step explanation:

Given : Expression 'eight increase by the square of a number is five times the difference of the number and 2'

To find : Write ans solve the expression ?

Solution :

Let the number be 'x',

Eight increase by the square of a number i.e. [tex]x^2+8[/tex]

Five times the difference of the number and 2 i.e. [tex]5(x-2)[/tex]

Expression is written as

'eight increase by the square of a number is five times the difference of the number and 2'

[tex]x^2+8=5(x-2)[/tex]

Solving the expression,

[tex]x^2+8=5x-10[/tex]

[tex]x^2-5x+18=0[/tex]

Using quadratic formula, [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Here, a=1 , b=-5 and c=18.

[tex]x=\frac{-(-5)\pm\sqrt{(-5)^2-4(1)(18)}}{2(1)}[/tex]

[tex]x=\frac{5\pm\sqrt{25-72}}{2}[/tex]

[tex]x=\frac{5\pm\sqrt{-47}}{2}[/tex]

[tex]x=\frac{5\pm\sqrt{47}i}{2}[/tex]