Answer:
[tex]cos\phi = \frac{1}{2\sqrt2}[/tex]
Explanation:
Average power is defined as
[tex]P = I_{rms}V_{rms} cos\phi[/tex]
so here we know that
[tex]I_{rms} = \frac{V_{rms}}{z}[/tex]
[tex]P = \frac{V_{rms}^2}{z} cos\phi[/tex]
here we know that
[tex]cos\phi = \frac{R}{z}[/tex]
so we will have
[tex]P_{resonance} = 8 P_{nonresonance}[/tex]
[tex]\frac{V_{rms}^2}{z_1} \times \frac{R}{z_1} = 8 \frac{V_{rms}^2}{z_2} \times \frac{R}{z_2}[/tex]
so we have
[tex]z_1^2 = \frac{z_2^2}{8}[/tex]
[tex]z_1 = \frac{z_2}{2\sqrt2}[/tex]
at resonance power factor is given as
[tex]\frac{R}{z_1} = 1[/tex]
so when it is at non resonance condition then we have
[tex]cos\phi = \frac{R}{z_2}[/tex]
[tex]cos\phi = \frac{z_1}{2\sqrt2 z_1}[/tex]
[tex]cos\phi = \frac{1}{2\sqrt2}[/tex]