Ask Your Teacher A trough is 16 ft long and its ends have the shape of isosceles triangles that are 2 ft across at the top and have a height of 1 ft. If the trough is being filled with water at a rate of 9 ft3/min, how fast is the water level rising when the water is 8 inches deep?

Respuesta :

Answer:0.210 ft/min

Explanation:

Given

Length of trough [tex]L=16 ft[/tex]

width of base [tex]b=2 ft[/tex]

height of triangle[tex]h=1 ft[/tex]

From Similar triangles property

[tex]\frac{4}{2x}=\frac{1}{y}[/tex]

[tex]2y=x[/tex]

volume of water in time t

[tex]V=\frac{1}{2}\times (2x\cdot y)\cdot [/tex]

[tex]V=16xy[/tex]

[tex]V=32y^2[/tex]

differentiating

[tex]\frac{\mathrm{d} V}{\mathrm{d} t}=32\times 2\times y\times \frac{\mathrm{d} y}{\mathrm{d} t}[/tex]

at [tex]y=8 in.\approx 0.667 ft[/tex]

[tex]9=64\times 0.667\times \frac{\mathrm{d} y}{\mathrm{d} t}[/tex]

[tex]\frac{\mathrm{d} y}{\mathrm{d} t}=\frac{9}{64\times 0.667}[/tex]

[tex]\frac{\mathrm{d} y}{\mathrm{d} t}=0.210 ft/min[/tex]

Ver imagen nuuk