Answer:
Total displacement will be 1136.79 rad
Explanation:
We have given that wheel starts from the rest so initial angular velocity [tex]\omega _0=0rad/sec[/tex]
Angular velocity after 3.8 sec is given as 4.8 rad/sec
So [tex]\omega _f=4.8rad/sec[/tex]
From second equation of motion we know that
[tex]\omega _f=\omega _0+\alpha t[/tex]
[tex]\alpha =\frac{\omega _f-\omega _i}{t}=\frac{4.8-0}{3.8}=1.2631rad/sec^2[/tex]
This acceleration is constant until 20 sec
So displacement in 20 sec
[tex]\Theta =\omega _0t+\frac{1}{2}\alpha t^2=0\times 20+\frac{1}{2}\times 1.2631\times 20^2=252.62rad[/tex]
Total time is given as t = 55 sec
So left time = 55 - 20 =35 sec
After 20 sec angular acceleration is 0
So displacement in 35 sec
[tex]Theta =\omega _0t[/tex]
Angular velocity after 20 sec [tex]\omega _0=\alpha t=1.2631\times 20=25.262rad/sec[/tex]
So displacement [tex]\Theta =35\times 25.262=884.17rad[/tex]
So total displacement in 55 sec = 252.62 +884.17 = 1136.79 rad