Jack was so frustrated with his slow laptop that he threw it out of his second story window. The height, h, of the laptop at time t seconds can be given by the equation h(t)= -16t^2 + 28t + 17. Assuming the laptop hits the ground below, find the domain of the function.

Respuesta :

Answer:

The domain of the function is the interval [0,2.23]

see the explanation

Step-by-step explanation:

Let

t ----> the time in seconds

h(t) ----> the height of the laptop in units

we have

[tex]h(t)=-16t^{2}+28t+17[/tex]

we know that

When the laptop hits the ground, the value of h(t) is equal to zero

so

For h(t)=0

[tex]-16t^{2}+28t+17=0[/tex]

Solve the quadratic equation

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]-16t^{2}+28t+17=0[/tex]

so

[tex]a=-16\\b=28\\c=17[/tex]

substitute in the formula

[tex]x=\frac{-28(+/-)\sqrt{28^{2}-4(-16)(17)}} {2(-16)}[/tex]

[tex]x=\frac{-28(+/-)\sqrt{1,872}} {-32}[/tex]

[tex]x=\frac{-28(+/-)12\sqrt{13}} {-32}[/tex]

[tex]x_1=\frac{-28(+)12\sqrt{13}} {-32}=-0.477[/tex]

[tex]x_1=\frac{28(-)12\sqrt{13}} {32}=-0.477[/tex]  ---> is not a solution

[tex]x_2=\frac{-28(-)12\sqrt{13}} {-32}[/tex]

[tex]x_2=\frac{28(+)12\sqrt{13}} {32}=2.23\ sec[/tex]

therefore

The domain of the function is the interval [0,2.23]

All real numbers greater than or equal to 0 seconds and less than or equal to 2.23 seconds

[tex]0\ sec \leq x \leq 2.23\ sec[/tex]