Answer:
Step-by-step explanation:
Given that the random variable X is normally distributed, with
mean = 50 and standard deviation = 7.
Then we have z= [tex]\frac{x-50}{7} is N(0,1)[/tex]
Using this and normal table we find that
a) [tex]P(56<x<68)\\= P(0.86<Z<2.57)\\=0.4949-0.3051\\=0.1898[/tex]
b) When z=0.02
we get
[tex]x=50+0.02(7)=50.14[/tex]
c) 90th percentile z value =1.645
90th percentile of X [tex]=50+7(1.645)\\= 50+11.515\\=61.515[/tex]