Answer:
[tex] 7.1[/tex] ms⁻¹
Explanation:
[tex]d[/tex] = diameter of merry-go-round = 4 m
[tex]r[/tex] = radius of merry-go-round = [tex]\frac{d}{2}[/tex] = [tex]\frac{4}{2}[/tex] = 2 m
[tex]I[/tex] = moment of inertia = 500 kgm²
[tex]w_{i}[/tex] = angular velocity of merry-go-round before ryan jumps = 2.0 rad/s
[tex]w_{f}[/tex] = angular velocity of merry-go-round after ryan jumps = 0 rad/s
[tex]v[/tex] = velocity of ryan before jumping onto the merry-go-round
[tex]m[/tex] = mass of ryan = 70 kg
Using conservation of angular momentum
[tex]Iw_{i} - m v r = (I + mr^{2})w_{f}[/tex]
[tex](500)(2.0) - (70) v (2) = (I + mr^{2})(0)[/tex]
[tex]1000 = 140 v[/tex]
[tex]v = 7.1[/tex] ms⁻¹